ANTIFERROMAGNETIC COMPLEXES WITII A METAL-METAL BOND

VIII *. SYNTHESIS AND STRUCTURE OF THE ANTIFERROMAGNETIC HETERONUCLEAR CLUSTER, "BUTTERFLY" (OR "METAL-CHAIN"), $\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right)$

A.A. PASYNSKII ${ }^{\star}$, I.L. EREMENKO, O.G. ELLERT, V.M. NOVOTORTSEV, Yu.V. RAKITIN, V.T. KALINNIKOV

N.S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the U.S.S.R., Leninskii Prospekt 31, Moscow V-71 (U.S.S.R.)
V.E. SHKLOVER and Yu.T. STRUCHKOV
A.N. Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of the U.S.S.R., Vavilova St. 28, Moscow 117813 (U.S.S.R.)
(Received March 4th, 1982)

Summary

By heating the mixture of solutions of $\left(\mathrm{CpCrSCMe}_{3}\right)_{2} \mathrm{~S}(\mathrm{I})$ in benzene and [$\mathrm{CpNi}(\mathrm{CO})]_{2}$ in pentane followed by chromatography on alumina, dark cherryred needles of the heteronuclear cluster $\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right)$ (II) were obtained, whose structure was established on the basis of a complete X-ray analysis. The crystals are rhombic, spatial group Pbca; $a=12.07$ (1), $b=18.50$ (2), $c=17.36(1) \AA, Z=8$. The metallic skeleton of II has the "butterfly" or "metal-chain" structure with a direct $\mathrm{Cr}-\mathrm{Cr}$ bond (2.62(1) \AA) and inequivalent $\mathrm{Cr}-\mathrm{Ni}$ bonds, $2.86(1)$ and $2.64(1) \AA$, while the $\mathrm{Ni} \cdots \mathrm{Ni}$ distance is nonbonding (4.34(1) \AA). The NiCr_{2} triangle planes produce a dihedral angle of 127°. The two μ^{3}-bridged sulfur atoms locate under these triangles whereas the third sulfur atom is μ^{4}-bridging coordinating all four metal atoms in the cluster with mean $\mathrm{Ni}-\mathrm{S}$ and $\mathrm{Cr}-\mathrm{S}$ distances of $2.29(1)$ and $2.25(1) \AA$, respectively. The $\mathrm{Ni}_{2} \mathrm{~S}_{3}$ group is planar and almost perpendicular to the $\mathrm{Cr}-\mathrm{Cr}$ axis. Complex II is antiferromagnetic and its exchange parameter $-2 J\left(418 \mathrm{~cm}^{-1}\right)$ is close to that found for the initial binuclear complex I ($-2 J=430 \mathrm{~cm}^{-1}$ with a $\mathrm{Cr}-\mathrm{Cr}$ bond length of $2.689(8) \AA$). The role of the Ni coordination number in the generation of II is discussed.

[^0]
Introduction

In our earlier works of these series we have shown [1-4] that the binuclear complex (CpCrSCMe$)_{2} \mathrm{~S}$ (I) [5] may be used as an unusual ligand in reactions with metal carbonyl Lewis acids LM(CO), the transformations of I depending on the metal M coordination number (CN). For $C N=6$ the structure of I in $(\mathrm{CpCrSCMe} 3) \mathrm{S} \cdot \mathrm{ML}$ complexes is practically the same $\left(\mathrm{ML}(\mathrm{CO})=\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\right.$ Mo, W, Cr) [1]; $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ [3]) while for $\mathrm{CN}=5\left(\mathrm{ML}(\mathrm{CO})=\mathrm{Fe}(\mathrm{CO})_{5}\right.$ [2], $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ [3]) one observes a loss of one t-butyl group and formation of a $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)(\mathrm{S})_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ metallochain [2] and a $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)(\mathrm{S})_{2} \mathrm{Co}(\mathrm{CO})_{2}$ metallocycle [3], respectively. In this view it was of interest to study the reactions of I with cyclopentadienylmetal carbonyls, CpML(CO), in which metal coordination number may vary from 5 to 7. We have shown [4] that when $\mathrm{CN}=6\left(\mathrm{CpML}(\mathrm{CO})=\mathrm{CpMn}(\mathrm{CO})_{3}\right)$ the structure of I in the complex $\left[(\mathrm{CpCrSCMe})_{2} \mathrm{~S} \cdot \mathrm{M}(\mathrm{CO})_{2} \mathrm{Cp}\right]$ is unchanged, while for $\mathrm{CN}=7(\mathrm{CpML}(\mathrm{CO})=$ $\mathrm{CpV}(\mathrm{CO})_{4}$ and $\left.\mathrm{CpNb}(\mathrm{CO})_{4}\right)$ it undergoes a transformation, yielding the paramagnetic metallotetrahedra $\mathrm{Cp}_{4} \mathrm{Cr}_{3} \mathrm{M}\left(\mu^{3}-\mathrm{S}\right)_{4}$.

In this paper we describe the reaction of I with $[\mathrm{CpNi}(\mathrm{CO})]_{2}$, having for Ni . $\mathrm{CN}=5$ in an unbridged structure and the structure and magnetic properties of generated complex: $\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right)$ (II).

Results

1. Synthesis and structure of complex II

On refluxing a mixture of a violet benzene solution of I and a red pentane solution of $[\mathrm{CpNi}(\mathrm{CO})]_{2}$ (prepared from $\mathrm{Cp}_{2} \mathrm{Ni}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$ and used without isolation), the complex disappears completely and the solution becomes brown, from which complex II was obtained after chromatography on alumina, elution with benzene and crystallization from benzene/heptane:

$$
\begin{equation*}
\left.(\mathrm{CpCrSCMe})_{3}\right)_{2} \mathrm{~S} \xrightarrow[\mathrm{C}_{6} \mathrm{H}_{6} / \text { pentane }]{\left[\mathrm{C}_{\mathrm{NNi}}(\mathrm{CO})\right]_{2}}\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right) \tag{I}
\end{equation*}
$$

Note that under analogous conditions the reaction of I with Cp_{2} Ni does not. proceed. Complex II is in the form of dark cherry-red needles, stable in air but decomposing without melting at $200^{\circ} \mathrm{C}$, moderately soluble in THF and benzene, and insoluble in saturated hydrocarbons. The structure of II was established by means of a complete X-ray analysis (Fig. 1). The atomic coordinates are listed in Table 1, the bond lengths in Table 2, and the bond angles in Table 3.

Complex II is a cluster, in which the $\mathrm{Cr}_{2} \mathrm{Ni}_{2}$ metallic skeleton forms an open, "butterfly", tetrahedron, including two NiCr_{2} triangles with a common $\mathrm{Cr}(1)$ $\mathrm{Cr}(2)$ bond (2.62(1) \AA), and with $\mathrm{Ni} \cdots \mathrm{Ni}$ distance (4.34(1) \AA) excluding direct bonding between these atoms. One of the two $\mathrm{Ni}-\mathrm{Cr}$ sides of each triangle is $0.2 \AA$ longer than the other, having mean lengths of 2.86(1) and 2.64(1) \AA, respectively. The NiCr_{2} triangle planes produce a dihedral angle of 127°. The bisectorial plane of this angle contains the μ^{4}-bridged $S(1)$ atom, bonded to all four metal atoms with mean $\mathrm{Ni}-\mathrm{S}(1)$ and $\mathrm{Cr}-\mathrm{S}(1)$ distances of 2.29(1) and $2.25 \AA$, respectively.
TABLE 1
ATOMIC COORDINATES $\left(\times 10^{3}\right)$ (for Ni, Cr and $\mathrm{S} \times 10^{4}$) AND aNISOTROPIC TEMPERATURE FACTORS IN TILE FORM $T=\operatorname{cxp}\left[-1 / 4\left(B_{11} h^{2} a^{\star 2}+\ldots+2 B_{12} h k a^{*} b^{\star}+\ldots\right)\right]$

Atom	x	Y	2	B_{11}	B_{22}	B_{33}	B_{12}	${ }_{13}$	B_{23}
$\mathrm{Ni}(1)$	1284(7)	4859(4)	1785(5)	2.6 (3)	2.1(3)	1,9(4)	0.2(3)	0.7(4)	0.3(3)
$\mathrm{Ni}(2)$	1050(7)	7040(4)	880 (1)	2.1(4)	$1.9(4)$	1,9(4)	0,3(3)	0.0(4)	0.6 (3)
Cr(1)	2283(8)	5712(5)	795(5)	2.1(5)	2.0(4)	1,6(4)	0,0(4)	0,5(5)	0.0(4)
$\mathrm{Cr}(2)$	1783(8)	6337(5)	2105(5)	1.5(4)	2.8(5)	1.3(4)	0.0(4)	0.0(4)	-0.2(4)
S(1)	564(13)	5861(8)	1237(10)	1.7(7)	1.9(7)	2,2(8)	${ }^{0} 0.4(7)$	-0.7(7)	0.2(6)
S(2)	2774(13)	6853(8)	1171(9)	2.1(8)	1.5(7)	2.8 (8)	-0,4(7)	$0.5(7)$	-0.4(6)
S(3)	2882(13)	5351(8)	1947(9)	3.98)	2.8(8)	2.2(8)	-0,4(7)	$0.417)$	1.1(7)
C(1)	37(5)	396(4)	138(4)	4(2)	11(5)	3(4)	-3(3)	-4(3)	1(3)
C(2)	-28(5)	434(3)	198(3)	7(4)	4(3)	0 (3)	-3(3)	2(3)	-1(3)
C(3)	36(6)	429(3)	264(4)	7(4)	-1(3)	3(4)	-4(3)	5(3)	0 (3)
C(4)	148(7)	$392(2)$	253(4)	8(5)	-1(2)	$4(3)$	0(3)	2(4)	1(3)
C(5)	138(4)	368(3)	177(4)	5 (3)	5(3)	2(4)	2(3)	4(3)	0(3)
C(6)	66(5)	821(3)	97(2)	0(4)	4(4)	0 (2)	4(3)	$3(2)$	$1(2)$
C(7)	-41(5)	738(3)	40(4)	-1(2)	$2(4)$	$2(4)$	3(4)	0 (3)	1(3)
C(8)	46(6)	754(4)	-11(4)	7(4)	4(3)	3(5)	2(3)	2(4)	1(3)
C(0)	122(1)	806(1)	23(1)	-7,8(6)	$-5.2(6)$	10(2)	4.9(4)	$-5.8(7)$	-2.0(7)
$\mathrm{C}(10)$	-30(5)	776(3)	110(4)	5(4)	4 (3)	2(3)	-2(3)	1(3)	1(3)
C(11)	$352(6)$	498(4)	20(4)	13(5)	5 (4)	1(3)	$0(4)$	$3(3)$	$-1(3)$
C(12)	353 (5)	572(3)	-15 (3)	4(4)	8 (3)	1(3)	3(3)	1(3)	-1(3)
C(13)	240(5)	593(3)	-47(3)	10(3)	1 (3)	0(3)	$-5(3)$	2(3)	-1(3)
C(14)	176(6)	523(4)	-32(4)	8(4)	8 (4)	2(3)	7(3)	$-1(3)$	-2(3)
C(15)	236(6)	474(4)	6(3)	3(4)	5 (4)	2(3)	-2(4)	3(3)	-1(3)
C(16)	56(5)	646(4)	$309(3)$	0 (4)	9 (4)	1(3)	3(4)	-2(3)	-3(3)
C(17)	153(7)	611(3)	335 (3)	4(6)	$6(4)$	0(2)	-6(4)	2(3)	-2(3)
C(18)	243(5)	653(4)	324(3)	1 (3)	$6(5)$	2(3)	-2(3)	-4(3)	-4(3)
C(19)	209(7)	718(4)	295(4)	5(5)	$2(4)$	$2(3)$	-2(3)	-4(3)	0 (3)
C(20)	99(6)	723(4)	281(4)	6(4)	4(5)	2(3)	$-1(4)$	0 (3)	0 (3)

Fig. 1. The structure of $\left(\mathrm{CP}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right)$.

TABLE 2
BOND LENGTHS

Bond	$d(\AA)$	Bond	d (A)	Bond	$d(\AA)$
$\mathrm{Ni}(1)-\mathrm{Cr}(1)$	2.63(1)	Cr(2)-S(1)	2.26(2)	$\mathrm{Ni}(2)-\mathrm{C}(10)$	2.14(6)
$\mathrm{Ni}(1)-\mathrm{Cr}(2)$	2.85(1)	Cr(2)-S(2)	2.27(2)	$\mathrm{Cr}(1)-\mathrm{C}(11)$	2.27(7)
$\mathrm{Ni}(2)-\mathrm{Cr}(1)$	2.88(1)	Cr(2)-S(3)	2.23(2)	Cr(1)-C(12)	2.23(6)
$\mathrm{Ni}(2)-\mathrm{Cr}(2)$	2.65(1)	$\mathrm{Ni}(1)-\mathrm{C}(1)$	2.11 (7)	$\mathrm{Cr}(1)-\mathrm{C}(13)$	2.23(5)
$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	2.62(1)	$\mathrm{Ni}(1)-\mathrm{C}(2)$	2.14(6)	Cr(1)-C(14)	2.23(6)
$\mathrm{Mi}(1)-\mathrm{S}(1)$	2.30(1)	$\mathrm{Ni}(1)-\mathrm{C}(3)$	2.14(7)	$\mathrm{Cr}(1)-\mathrm{C}(15)$	2.21(7)
$\mathrm{Ni}(1)-\mathrm{S}(2)$	2.15 (1)	Ni(1)-C(4)	2.17(5)	$\mathrm{Cr}(2)-\mathrm{C}(16)$	2.27(6)
$\mathrm{Ni}(2)-\mathrm{S}(1)$	2.29(1)	$\mathrm{Ni}(1)-\mathrm{C}(5)$	2.19(6)	$\mathrm{Cr}(2)-\mathrm{C}(17)$	2.22(5)
Ni(2)-S(3)	2.17 (1)	Ni(2)-C(6)	2.22(6)	$\mathrm{Cr}(2)-\mathrm{C}(18)$	2.15(6)
$\mathrm{Cr}(1)-\mathrm{S}(1)$	2.24(1)	$\mathrm{Ni}(2)-\mathrm{C}(7)$	2.05(6)	$\mathrm{Cr}(2)-\mathrm{C}(19)$	2.17(6)
Cr(1)-S(2)	2.23(1)	$\mathrm{Ni}(2)-\mathrm{C}(8)$	2.08(7)	$\mathbf{C r}(2)-\mathrm{C}(20)$	2.26(7)
$\mathrm{Cr}(1)-\mathrm{S}(3)$	$2.29(1)$	Ni(2)-C(9)	$2.21(5)$		

The μ^{3}-bridged atoms $\mathbf{S}(2)$ and $\mathbf{S}(3)$ are located under each of the NiCr_{2} triangles, displaced from their planes by 0.197 and $0.195 \AA$, respectively, and they are furthest separated from the Cr atom with shorter $\mathrm{Ni}-\mathrm{Cr}$ bonding (Table 2). The mean $\mathrm{Cr}-\mathrm{S}$ distances are close to those of $\mathrm{Cr}-\mathrm{S}(1)$ bonds ($2.25 \AA$), while

TABLE 3
BOND ANGLES ω

Angle	$\omega\left({ }^{\circ}\right)$	Angle	$\omega\left({ }^{\circ}\right)$
$\mathrm{Cr}(1) \mathrm{Ni}(1) \mathrm{S}(1)$	33.5(5)	$\mathrm{S}(2) \mathrm{Cr}(2) \mathrm{Ni}(2)$	52.0(5)
$\mathrm{Cr}(1) \mathrm{Ni}(1) \mathrm{S}(3)$	54.5(5)	$\mathrm{Ni}(2) \mathrm{Cr}(2) \mathrm{S}(1)$	54.9(5)
$\mathrm{Cr}(2) \mathrm{Ni}(1) \mathrm{S}(1)$	50.7(5)	$\mathrm{S}(1) \mathrm{Cr}(2) \mathrm{Ni}(2)$	52.0(5)
$\mathrm{Cr}(2) \mathrm{Ni}(1) \mathrm{S}(3)$	$51.7(5)$	$\mathrm{Ni}(1) \mathrm{Cr}(2) \mathrm{Cr}(1)$	57.2(3)
$\mathrm{Cr}(1) \mathrm{Ni}(2) \mathrm{S}(1)$	49.8(5)	$\mathrm{S}(3) \mathrm{Cr}(2) \mathrm{Cr}(1)$	55.5(5)
$\mathrm{Cr}(1) \mathrm{Ni}(2) \mathrm{S}(2)$	$51.6(5)$	$\mathrm{S}(2) \mathrm{Cr}(2) \mathrm{Cr}(1)$	53.6(5)
Cr(2)Ni(2)S(1)	54.0(5)	$\mathrm{Ni}(2) \mathrm{Cr}_{(2)} \mathbf{C r}$ (1)	$57.2(3)$
$\mathrm{Cr}(2) \mathrm{Ni}(2) \mathrm{S}(2)$	54.1(5)	$\mathrm{S}(1) \mathrm{Cr}(2) \mathrm{Cr}(1)$	$53.9(5)$
$\mathrm{Ni}(1) \mathrm{Cr}(1) \mathrm{S}(3)$	51.8(5)	$\mathrm{Ni}(1) \mathrm{S}(1) \mathrm{Cr}(1)$	70.7(6)
$\mathrm{S}(3) \mathrm{Cr}(1) \mathrm{S}(2)$	86.3(6)	$\mathrm{Cr}(1) \mathrm{S}(1) \mathrm{Ni}(2)$	$78.9(8)$
$\mathrm{S}(2) \mathrm{Cr}(1) \mathrm{Ni}(2)$	48.1(5)	$\mathrm{Ni}(2) \mathrm{S}(1) \mathrm{Cr}(2)$	71.6(6)
$\mathrm{Ni}(2) \mathrm{Cr}(1) \mathrm{S}(1)$	51.4(5)	$\mathrm{Cr}(2) \mathrm{S}(1) \mathrm{Ni}(1)$	77.4(6)
$\mathrm{S}(1) \mathrm{Cr}(1) \mathrm{Ni}(1)$	55.8(5)	$\mathrm{Cr}(1) \mathrm{S}(1) \mathrm{Cr}(2)$	7玉.3(6)
Cr(2)Cr(1)Ni(1)	65.9(3)	$\mathrm{Ni}(1) \mathrm{S}(1) \mathrm{Ni}(2)$	141.7(8)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(3)$	53.5(5)	$\mathrm{Ni}(2) \mathrm{S}(2) \mathrm{Cr}(1)$	80.3(6)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(2)$	$55.1(5)$	$\mathrm{Cr}(1) \mathrm{S}(2) \mathrm{Cr}(2)$	$71.0(6)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Ni}(2)$	57.3(3)	$\mathrm{Cr}(2) \mathrm{S}(2) \mathrm{Ni}(2)$	73.9(6)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(1)$	54.8(5)	$\mathrm{Ni}(1) \mathrm{S}(3) \mathrm{Cr}(1)$	73.7(6)
$\mathrm{Ni}(1) \mathrm{Cr}(2) \mathrm{S}(3)$	48.0(5)	$\mathrm{Cr}(1) \mathrm{S}(3) \mathrm{Cr}(2)$	71.3(6)
$\mathrm{S}(3) \mathrm{Cr}(2) \mathrm{S}(2)$	86.7(6)	$\mathrm{Cr}(2) \mathrm{S}(3) \mathrm{Ni}(1)$	80.3(6)

the $\mathrm{Ni}-\mathrm{S}(2)$ and $\mathrm{Ni}-\mathrm{S}(3)$ mean bond lengths (2.16(1) \AA) are significantly shorter than the mean $\mathrm{Ni}-\mathrm{S}(1)$ distance (2.29(1) \AA). The NiSCr angles facing the shorter $\mathrm{Ni}-\mathrm{Cr}$ bonds ($2.63 \AA$) are smaller ($70.7(6)-73.9(6)^{\circ}$) than those facing the longer $\mathrm{Ni}-\mathrm{Cr}$ bonds (2.85 and $2.87 \AA$) (77.4(6)-80.3 $)$ (Table 3).

The $\mathrm{Ni}(1) \mathrm{Cr}(1) \mathrm{Cr}(2)$ and $\mathrm{Ni}(2) \mathrm{Cr}(1) \mathrm{Cr}(2)$ planes are almost perpendicular to the $\mathrm{Ni}_{2} \mathrm{~S}_{3}$ plane (dihedral angles of 88.2 and 87.6°), the latter plane being also almost perpendicular to the $\mathrm{Cr}-\mathrm{Cr}$ bond (angle 85.3°) cutting it into equal parts ($1.31 \AA$). In general, analysis of the planar fragments shows an approximate mm symmetry of the inorganic nucleus of the molecule.

The peripheral π-cyclopentadienyl ligands are planar (the $\mathrm{C}-\mathrm{C}$ distances and CCC angles are normal). The rings $\mathrm{C}(11) \cdots \mathrm{C}(15)$ and $\mathrm{C}(16) \cdots \mathrm{C}(20)$, bonded to $\mathrm{Cr}(1)$ and $\mathrm{Cr}(2)$, respectively, are almost perpendicular to the $\mathrm{Cr} \cdots \mathrm{Cr}$ axis and almost parallel to the $\mathrm{Ni}_{2} \mathrm{~S}_{3}$ plane. The $\mathrm{Ni}-\mathrm{C}$ and $\mathrm{Cr}-\mathrm{C}$ bond lengths are $2.05(6)-2.21(2) \AA$ and $2.15(6)-2.27(6) \AA$, respectively.

2. The magnetic properties of complex II

The effective magnetic moments,
$\mu_{\text {eff }}=\sqrt{8 \chi_{M} T}$
where χ_{M} is the molar magnetic susceptibility, were estimated from the temperature dependence of the magnetic susceptibility of complex II (Table 4). Complex II is antiferromagnetic, the temperature dependence of its effective magnetic moment being similar to that observed for the initial complex I [5]. The experimental data agree best with the Heisenberg-Dirac-Van Vleck (HDVV) theoretical model for two coupled ions (the nickel atoms are diamagnetic) in the absence of orbital degeneracy of the complex ground states. The spin Hamil-
tonian has the form [6]
$\hat{H}=-2 J \hat{S}_{1} \hat{S}_{2}-g \beta H\left(S_{1 z}+S_{2 z}\right)$
where J is the isotropic exchange coupling parameter, g is isotropic g-factor, and S are the spins of the exchange-coupled ions (here $S_{1}=S_{2}=3 / 2$).

The computation of theoretical values of χ_{M} and minimization of the meansquare deviations were performed using the program described in ref. 7. For II the value of $-2 J=418 \mathrm{~cm}^{-1}, \mu_{\text {eff }}$, B.M. $\left(T,{ }^{\circ} \mathrm{K}\right): 1.16$ (295), $0.62(150), 0.42$ (78); monomer admixture $=1 \%$.

Results and discussion

The unexpected formation of the $\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-\mathrm{S}\right)_{2}\left(\mu^{4}-\mathrm{S}\right)$ (II) cluster in the reaction of $(\mathrm{CpCrSCMe})_{2} \mathrm{~S}$ (I) with the dimer $[\mathrm{CpNi}(\mathrm{CO})]_{2}$ is a result of the tendency of I towards loss of the t-butyl groups upon interaction with metal carbonyl Lewis acids having a metal CN of 5 [2,3], as mentioned in the Introduction. The first step of this reaction may be the replacement of a carbonyl group in $[\mathrm{CpNi}(\mathrm{CO})]_{2}$ by a lone electron pair of the sulfide bridge of I , giving an intermediate complex A:

This step is similar to the generation of the complex $(\mathrm{CpCrSCMe} 3)_{2} \mathrm{~S} \cdot \mathrm{Mn}_{2^{-}}$ (CO) ${ }_{9}$ (III) in the photochemical reaction of I with $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ [3]. However, in III, with Mn CN $=6$, the metal cannot interact further with the lone electron pairs of thiolate sulfur atoms, as it does in the assumed (CpCrSCMe$)_{2} \mathrm{~S} \cdot \mathrm{Fe}$ $(\mathrm{CO})_{4}$ [2] or $\left(\mathrm{CpCrSCMe}_{3}\right)_{2} \mathrm{~S} \cdot \mathrm{Co}_{2}(\mathrm{CO})_{7}$ [3] intermediates with $\mathrm{CN}=5$. In the latter case the CMe_{3} fragment is eliminated, with cleavage of the $\mathrm{Co}-\mathrm{Co}$ bond and loss of the $\mathrm{Co}(\mathrm{CO})_{4}$ fragment. Thus, after decarbonylation of the $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \cdot \mathrm{SCMe}_{3}\right)\left(\mu^{3}-\mathrm{S}\right)_{2} \mathrm{Co}(\mathrm{CO})_{3}$ intermediate the heteronuclear metallocycle is generated, $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)\left(\mu^{3}-\mathrm{S}\right)_{2} \mathrm{Co}(\mathrm{CO})_{2}$ (IV) [3]. In fact, intermediate A
undergoes similar transformation with the cleavage of the $\mathrm{Ni}-\mathrm{Ni}$ bond to form B. In this case, however, the second $\mathrm{CpNi}(\mathrm{CO})$ fragment combines with another lone electron pair of the sulfide bridge, losing its CO , and with another thiolate sulfur atom with elimination of the second t-butyl group.

Thus, the geometry and ligand environment of each NiCr_{2} triangle are similar to the structure of the inorganic skeleton in the metallocyclic cluster IV. In particular, the $\mathrm{Cr}-\mathrm{Cr}$ bonds have practically equal lengths (2.62(1) and 2.617(1) \AA, respectively), the $\mathrm{Co}-\mathrm{Cr}$ bond lengths (2.586(1) \AA) are close to the shorter $\mathrm{Ni}-\mathrm{Cr}$ bond ($2.63(1) \AA$). On the other hand, a considerable elongation of the second $\mathrm{Ni} \cdots$ Cr distance to $2.86(1) \AA$, which is greater than the sum of Ni and Cr covalent radii $(1.30+1.46=2.76[8])$ may be regarded as evidence for absence of such bonding. The Ni CN is equal to 6 rather than 7. Finally, the number of electrons in cluster II is equal to 66:
$4 \mathrm{C}_{5} \mathrm{H}_{5}+2 \mathrm{Cr}+2 \mathrm{Ni}+2\left(\eta^{3}-\mathrm{S}\right)+\left(\eta^{4}-\mathrm{S}\right)=20+12+20+8+6=66$
This is 4 electrons greater than the value needed for generation of a "metalbutterfly" skeleton, and corresponds to the formation of a zigzag $\mathrm{Ni}-\mathrm{Cr}-\mathrm{Cr}-\mathrm{Ni}$ "metal-chain".

Experimental

All operations were performed under pure argon atmosphere. The dimers $\left(\mathrm{CpCrSCMe}_{3}\right)_{2} \mathrm{~S}$ and $[\mathrm{CpNi}(\mathrm{CO})]_{2}$ were prepared by reported methods $[5,9]$. The solvents were purified by distillation over a sodium suspension under argon counterflow. The IR spectra were taken on Specord IR-75 instrument in KBr pellets. The magnetic susceptibility was measured by the Faraday method at $298-77 \mathrm{~K}$ [10]. The X-ray data were obtained on a Syntex P2 1_{1} diffractometer ($\lambda \mathrm{Mo}-K_{\alpha}$, graphite monochromator, scanning at $-100^{\circ} \mathrm{C}, \theta / 2 \theta$ scan). The structure was decoded by the direct method using the MULTAN program and refined by LSM using the anisotropic approximation for Ni, Cr and S atoms and the isotropic approach for C atoms to $R=0.072$ and $R_{\mathrm{w}}=0.065$ for 1413 reflections.

The atomic coordinates are shown in Table 1, and the bond lengths and angles are in Tables 2 and 3. The molecular structure is shown in Fig. 1.
$\left(\mathrm{Cp}_{4} \mathrm{Cr}_{2} \mathrm{Ni}_{2}\right)\left(\mu^{3}-S\right)_{3}\left(\mu^{4}-S\right)(I I)$
A dark-red solution of $[\mathrm{CpNi}(\mathrm{CO})]_{2}$ in 30 ml of pentane was added to a violet solution of $\left(\mathrm{CpCrSCMe}_{3}\right)_{2} \mathrm{~S}(0.8 \mathrm{~g}, 1.8 \mathrm{mmol})$ in 30 ml of benzene. The obtained cherry-red solution was refluxed for 1 h and had a stable red-brown colour. The brown solution was kept at room temperature for 12 h and separated on an alumina column ($35 \times 5 \mathrm{~cm}$); the brown zone was eluted with benzene. 5 ml of heptane was added to the brown solution (50 ml), which was concentrated at $60^{\circ} \mathrm{C} / 10$ torr and then cooled to $-5^{\circ} \mathrm{C}$. The dark cherry-red needles precipitated were separated from the solution, washed with heptane and dried under vacuum. Yield 0.5 g . IR spectrum (ν, cm^{-1}): $405 \mathrm{w}, 622 \mathrm{w}$, $678 \mathrm{w}, 782 \mathrm{~s}, 802 \mathrm{~s}, 829 \mathrm{w}, 900 \mathrm{w}, 1000 \mathrm{~m}, 1012 \mathrm{~m}, 1028 \mathrm{w}, 1048 \mathrm{~m}, 1068 \mathrm{~m}$, $1120 \mathrm{w}, 1140 \mathrm{w}, 1330 \mathrm{w}, 1420 \mathrm{~m}, 3090-3110$ (br)w.

References

1 A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, Yu. V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, G.G. Aleksandrov and Yu. T. Struchkov, J. Organometal. Chem., 210 (1981) 385.
2 A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, Yu.V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, G.G. Aleksandrov and Yu.T. Struchkov, J. Organometal. Chem., 210 (1981) 377.
3 A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, Yu.V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, G.G. Aleksandrov and Yu.T. Struchkov, J. Organometal. Chem., 214 (1981) 351.
4 A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, V.T. Kalinnikov, G.G. Aleksandrov and Yu.T. Struchkov, J. Organometal. Chem., 216 (1981) 211.
5 A.A. Pasynskii, I.L. Eremenko, Yu.V. Rakitin, V.M. Novotortsev, V.T. Kalinnikov, G.G. Aleksandrov, and Yu.T. Struchkov. J. Organometal. Chem., 165 (1979) 57.
G J.II. Van Vleck, The Theory of Electronic and Magnctic Susecptibilities, Oxford Univ. Press, Londion, 1932.

7 Yu.V. Rahītin, V.M. Nevotortsev, V.T. Kalinnikov, A.A. Pasynskii, G.M. Larin, A.V. Philatov and T.Ch. Idrisot, Koord. Khim., 3 (1977) 807.

8 V.G. Andrianov, B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1965) 1129.
9 R.B. King. Organometallic Syntheses, Vol. 1. Transition metal compounds, Academic Press, New York 1965.

10 V.M. Novotortsev, Dr. Ph. Thesis, Moscow Institute of Physics and Technology, 1974.

[^0]: * For part VII see ref. 4.

